Abstract

The finite-temperature mechanical strength of nanoscale pristine metals at laboratory strain rates may be controlled by surface dislocation nucleation, which was hypothesized to be only weakly dependent on the sample size. Previous studies on surface dislocation nucleation investigated factors such as surface steps, oxidation layers and surface diffusion, while the role of surface stresses and sample size remains unclear. Here we perform systematic atomistic calculations on the activation free energy barriers of surface dislocation nucleation in sub-50 nm nanowires. The results demonstrate that surface stresses significantly influence the activation processes of surface dislocation nucleation. This renders the strength strongly dependent on sample size; whether it is “smaller is stronger” or “smaller is weaker” depends on the combined effects of surface stress and applied axial stress, which can be universally explained in terms of the local maximum resolved shear stress. A linear relation between the activation entropy and activation enthalpy (Meyer-Neldel compensation rule) was found to work well across a range of stresses and sample sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call