Abstract

BackgroundStepped wedge trials (SWTs) can be considered as a variant of a clustered randomised trial, although in many ways they embed additional complications from the point of view of statistical design and analysis. While the literature is rich for standard parallel or clustered randomised clinical trials (CRTs), it is much less so for SWTs. The specific features of SWTs need to be addressed properly in the sample size calculations to ensure valid estimates of the intervention effect.MethodsWe critically review the available literature on analytical methods to perform sample size and power calculations in a SWT. In particular, we highlight the specific assumptions underlying currently used methods and comment on their validity and potential for extensions. Finally, we propose the use of simulation-based methods to overcome some of the limitations of analytical formulae. We performed a simulation exercise in which we compared simulation-based sample size computations with analytical methods and assessed the impact of varying the basic parameters to the resulting sample size/power, in the case of continuous and binary outcomes and assuming both cross-sectional data and the closed cohort design.ResultsWe compared the sample size requirements for a SWT in comparison to CRTs based on comparable number of measurements in each cluster. In line with the existing literature, we found that when the level of correlation within the clusters is relatively high (for example, greater than 0.1), the SWT requires a smaller number of clusters. For low values of the intracluster correlation, the two designs produce more similar requirements in terms of total number of clusters. We validated our simulation-based approach and compared the results of sample size calculations to analytical methods; the simulation-based procedures perform well, producing results that are extremely similar to the analytical methods. We found that usually the SWT is relatively insensitive to variations in the intracluster correlation, and that failure to account for a potential time effect will artificially and grossly overestimate the power of a study.ConclusionsWe provide a framework for handling the sample size and power calculations of a SWT and suggest that simulation-based procedures may be more effective, especially in dealing with the specific features of the study at hand. In selected situations and depending on the level of intracluster correlation and the cluster size, SWTs may be more efficient than comparable CRTs. However, the decision about the design to be implemented will be based on a wide range of considerations, including the cost associated with the number of clusters, number of measurements and the trial duration.

Highlights

  • Stepped wedge trials (SWTs) can be considered as a variant of a clustered randomised trial, in many ways they embed additional complications from the point of view of statistical design and analysis

  • As suggested by Hemming et al [32], in some cases the information provided by the within-cluster analysis in a SWT may lead to an improvement in efficiency, in comparison to a Cluster randomised trial (CRT) with the same number of overall measurements

  • We first assess the efficiency of a SWT against a standard CRT by comparing the sample size resulting from applying several alternative calculation methods and upon varying the intracluster correlation (ICC)

Read more

Summary

Introduction

Stepped wedge trials (SWTs) can be considered as a variant of a clustered randomised trial, in many ways they embed additional complications from the point of view of statistical design and analysis. Stepped wedge trials (SWTs) are a variant of CRTs where all clusters receive the intervention in a randomised order They have additional features which need to be formally taken into account in the sample size calculations, including: the number of crossover points; the number of clusters switching intervention arm at each time point; possible time and/or lag effect, indicating that the intervention effect may not be instantaneous; and the dynamic aspects of the underlying population, for example, whether the data are collected for a SWT in a cross-sectional manner or they are repeated measurements on the same individuals

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.