Abstract
This study is to give a systematic account of sample size adaptation designs (SSADs) and to provide direct proof of the efficiency advantage of general SSADs over group sequential designs (GSDs) from a different perspective. For this purpose, a class of sample size mapping functions to define SSADs is introduced. Under the two-stage adaptive clinical trial setting, theorems are developed to describe the properties of SSADs. Sufficient conditions are derived and used to prove analytically that SSADs based on the weighted combination test can be uniformly more efficient than GSDs in a range of likely values of the true treatment difference . As shown in various scenarios, given a GSD, a fully adaptive SSAD can be obtained that has sufficient statistical power similar to that of the GSD but has a smaller average sample size for all in the range. The associated sample size savings can be substantial. A practical design example and suggestions on the steps to find efficient SSADs are also provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.