Abstract
We study sample path large deviations for Lévy processes and random walks with heavy-tailed jump-size distributions that are of Weibull type. The sharpness and applicability of these results are illustrated by a counterexample proving the nonexistence of a full LDP in the $J_{1}$ topology, and by an application to a first passage problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.