Abstract
Let $X$ be a Lévy process with regularly varying Lévy measure $\nu$. We obtain sample-path large deviations for scaled processes $\bar{X}_{n}(t)\triangleq X(nt)/n$ and obtain a similar result for random walks with regularly varying increments. Our results yield detailed asymptotic estimates in scenarios where multiple big jumps in the increment are required to make a rare event happen; we illustrate this through detailed conditional limit theorems. In addition, we investigate connections with the classical large deviations framework. In that setting, we show that a weak large deviation principle (with logarithmic speed) holds, but a full large deviation principle does not hold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.