Abstract
The porosity/cement ratio (η/Civ) has been applied as a key parameter for the understanding of tensile and compressive strengths of a wide range of soils-cement mixtures, although the focus has been restricted to non-optimal compaction condition, which does not fully reflect the field execution process. Also, distinct sample dimensions have been utilized in the research area without taking this effect into account. Recognizing these needs, this study aims to evaluate the sample dimension effect on the equations controlling the mechanical behavior by η/Civ, under optimal compaction conditions. Using sandy soil, Unconfined Compressive Strength (UCS or qu) and Indirect Tensile Strength (ITS or qt) tests were performed from distinct curing period, cement type and content, based on conventional (127×100 mm) and reduced dimension (105×50 mm) specimens. The addition of both cements did not show significant variations in compaction parameters, which affected the η-qu and η-qt relations. The use of η/Civ ratio proved to be a suitable parameter for dosing, considering both sample dimensions under optimal compaction conditions. A unique exponent related to the increment of qu and qt along 7 and 28 curing days was obtained by each cement type, regardless of the sample dimension, leading to an average of 0.13 qt/qu relationship. Finally, mixtures molded in reduced dimension showed 20% higher strengths when compared to conventional dimension, despite the cement type and content, porosity, and curing period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.