Abstract

A technique for potential realization of atomic resolution magnetic resonance diffraction was recently proposed for the case of a crystalline sample in proximity of a ferromagnetic sphere [M. Barbic, J. Appl. Phys. 91, 9987 (2002)]. This article predicted the detection of distinct peaks in the number of resonant spin sites at different magnetic field values for specific sphere and crystal configurations. Here, the focus is on the specific detection coupling mechanisms between the resonant spin population of the sample and the magnetic sphere probe. We investigate and compare the force, torque, and flux detection mechanisms in order to provide guidance to the experimental efforts towards the realization of the atomic resolution magnetic resonance diffraction. We also investigate the dependence of the magnetic resonance diffraction spectrum on the relative position of the magnetic sphere with respect to the crystal lattice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call