Abstract

Recently, it has been shown that for compressive sensing, significantly fewer measurements may be required if the sparsity assumption is replaced by the assumption the unknown vector lies near the range of a suitably-chosen generative model. In particular, in (Bora et at., 2017) it was shown roughly O(k log L) random Gaussian measurements suffice for accurate recovery when the generative model is an L-Lipschitz function with bounded k-dimensional inputs, and O(kd log w) measurements suffice when the generative model is a k-input ReLU network with depth d and width w. In this paper, we establish corresponding algorithm-independent lower bounds on the sample complexity using tools from minimax statistical analysis. In accordance with the above upper bounds, our results are summarized as follows: (i) We construct an L-Lipschitz generative model capable of generating group-sparse signals, and show that the resulting necessary number of measurements is $\Omega(k\log L)$; (ii) Using similar ideas, we construct ReLU networks with high depth and/or high width for which the necessary number of measurements scales as $\Omega\left(k d \frac{\log w}{\log n}\right)$ (with output dimension n), and in some cases $\Omega(k d \log w)$. As a result, we establish that the scaling laws derived in (Bora et al$.,2017$) are optimal or near-optimal in the absence of further assumptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.