Abstract

Siamese network-based visual tracking algorithms have achieved excellent performance in recent years, but challenges such as fast target motion, shape and scale variations have made the tracking extremely difficult. The regression of anchor-free tracking has low computational complexity, strong real-time performance, and is suitable for visual tracking. Based on the anchor-free siamese tracking framework, this paper firstly introduces balance factors and modulation coefficients into the cross-entropy loss function to solve the classification inaccuracy caused by the imbalance between positive and negative samples as well as the imbalance between hard and easy samples during the training process, so that the model focuses more on the positive samples and the hard samples that make the major contribution to the training. Secondly, the intersection over union (IoU) loss function of the regression branch is improved, not only focusing on the IoU between the predicted box and the ground truth box, but also considering the aspect ratios of the two boxes and the minimum bounding box area that accommodate the two, which guides the generation of more accurate regression offsets. The overall loss of classification and regression is iteratively minimized and improves the accuracy and robustness of visual tracking. Experiments on four public datasets, OTB2015, VOT2016, UAV123 and GOT-10k, show that the proposed algorithm achieves the state-of-the-art performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call