Abstract

The theory on the traditional sample average approximation (SAA) scheme for stochastic programming (SP) dictates that the number of samples should be polynomial in the number of problem dimensions in order to ensure proper optimization accuracy. In this paper, we study a modification to the SAA in the scenario where the global minimizer is either sparse or can be approximated by a sparse solution. By making use of a regularization penalty referred to as the folded concave penalty (FCP), we show that, if an FCP-regularized SAA formulation is solved locally, then the required number of samples can be significantly reduced in approximating the global solution of a convex SP: the sample size is only required to be poly-logarithmic in the number of dimensions. The efficacy of the FCP regularizer for nonconvex SPs is also discussed. As an immediate implication of our result, a flexible class of folded concave penalized sparse M-estimators in high-dimensional statistical learning may yield a sound performance even when the problem dimension cannot be upper-bounded by any polynomial function of the sample size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.