Abstract
AbstractThe global minimum variance portfolio (GMVP) is the starting point of the Markowitz mean‐variance efficient frontier. The estimation of the GMVP weights is therefore of much importance for financial investors. The GMVP weights depend only on the inverse covariance matrix of returns on financial risky assets, for this reason the estimated GMVP weights are subject to substantial estimation risk, especially in high‐dimensional portfolio settings. In this paper we review the recent literature on traditional sample estimators for the unconditional GMVP weights which are typically based on daily asset returns, as well as on modern realized estimators for the conditional GMVP weights based on intraday high‐frequency returns. We present various types of GMVP estimators with the corresponding stochastic results, discuss statistical tests and point on some directions for further research. Our empirical application illustrates selected properties of realized GMVP weights.This article is categorized under: Statistical and Graphical Methods of Data Analysis > Multivariate Analysis Statistical and Graphical Methods of Data Analysis > Analysis of High Dimensional Data Statistical Models > Multivariate Models
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.