Abstract

This paper proposes a novel regression method based on Sammon's mapping dimensionality reduction technique for the quantification of glucose from both near infrared and mid infrared spectra. The proposed regression model was validated to determine the concentration of glucose from the spectra of aqueous mixtures consisting of human serum albumin and glucose in phosphate buffer solution from both near infrared (NIR) and mid infrared (MIR) regions. The performance of the proposed prediction model has been analysed with traditional regression methods principal component regression (PCR) and partial least squares regression (PLSR) models. The results indicate that the proposed model yields improved prediction performance compared to PCR and PLSR methods. In detail, the proposed Sammon's mapping regression (SMR) model provides better prediction ability by reducing the root mean square error of prediction (RMSEP) from 35.74 mg dL-1 for PCR and 31.39 mg dL-1 for PLSR to 21.89 mg dL-1 for the proposed regression model in the MIR region and the RMSEP has been reduced from 38.15 mg dL-1 for the PCR model and 37.5 mg dL-1 for the PLSR model to 29.74 mg dL-1 for the SMR model in the NIR region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.