Abstract

Algebraic multigrid (AMG) is a class of high-performance linear solvers based on multigrid principles. Compared to geometric multigrid (GMG) solvers that rely on the geometric information of underlying problems, AMG solvers build hierarchical coarse level problems according to the input matrices. Graph-theoretic Algebraic Multigrid (AMG) algorithms have emerged for solving large Symmetric Diagonally Dominant (SDD) matrices by taking advantages of spectral properties of graph Laplacians. This paper proposes a Sparsified graph-theoretic Algebraic Multigrid (SAMG) framework that allows efficiently constructing nearly-linear sized graph Laplacians for coarse level problems while maintaining good spectral approximation during the AMG setup phase by leveraging a scalable spectral graph sparsification engine. Our experimental results show that the proposed method can offer more scalable performance than existing graph-theoretic AMG solvers for solving large SDD matrices in integrated circuit (IC) simulations, 3D-IC thermal analysis, image processing, finite element analysis as well as data mining and machine learning applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.