Abstract

Using a unique dataset of daily returns of 89 programmes of Commodity Trading Advisors (CTAs), we investigate the distributional properties of CTA strategies including trend following, fundamental and contrarian strategies. We find that daily data exhibits strong features of fat-tail, volatility clustering, and long memory in volatility. This is different from previous studies which are often based on monthly data. Our study contributes to the literature of stylized facts of financial markets, it also provides insights to practitioners because the information from monthly data might be misleading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.