Abstract
The multi-armed bandit is a reinforcement learning model where a learning agent repeatedly chooses an action (pull a bandit arm) and the environment responds with a stochastic outcome (reward) coming from an unknown distribution associated with the chosen arm. Bandits have a wide-range of application such as Web recommendation systems. We address the cumulative reward maximization problem in a secure federated learning setting, where multiple data owners keep their data stored locally and collaborate under the coordination of a central orchestration server. We rely on cryptographic schemes and propose Samba, a generic framework for Secure federAted Multi-armed BAndits. Each data owner has data associated to a bandit arm and the bandit algorithm has to sequentially select which data owner is solicited at each time step. We instantiate Samba for five bandit algorithms. We show that Samba returns the same cumulative reward as the nonsecure versions of bandit algorithms, while satisfying formally proven security properties. We also show that the overhead due to cryptographic primitives is linear in the size of the input, which is confirmed by our proof-of-concept implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.