Abstract

DNA methylation have been suggested as possible mediators of long-term health effects of environmental stressors. This study aimed to evaluate the potential therapy of methylation of S-adenosyl-l-methionine (SAM) on PFOS induced trangeneral reproductive toxicity. In this study, postnatal 5d Sprague Dawley rats were randomly divided into four groups: control, PFOS, PFOS + SAM, and PFOS + Decitabine (DAC). The F0 rats were exposed to 5 mg/kg PFOS and SAM or DAC until PND60. The development of the offsprings were monitored without PFOS exposure. The fertility in F0, F1 rats, and change in F1 testes were observed. The results were as follows. The significant increase in F0 pregnancy rate, and survival rate in F1 offspring in PFOS + SAM relative to PFOS group were observed. Changes of birth weights and physical development in F1 offspring with SAM were approached as a corresponding variation of the control after the deparation period. No pregnant in F1 maternal rats in the PFOS and DAC groups were found, but pregnant in the SAM group. Significantly decrease in the percentage of abnormal seminiferous tubules and increase in expression of promyelocytic leukemia zinc finger (PLZF+) spermatogonial stem cells in F1 testis compared with the PFOS group. Taken together, Methyl donor SAM improve PLZF + spermatogonia stem cell proliferation, attenuate damage in testicular tissue structure, which subsequently improve the transgenerational growth retard and infertility induced by PFOS chronic stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call