Abstract

Epithelial-mesenchymal transition (EMT) was reported to be involved in the activation of hepatic stellate cells (HSCs), contributing to the development of liver fibrosis. Epithelial-mesenchymal transition can be promoted by the Hedgehog (Hh) pathway. Patched1 (PTCH1), a negative regulatory factor of the Hh signalling pathway, was down-regulated during liver fibrosis and associated with its hypermethylation status. MicroRNAs (miRNAs) are reported to play a critical role in the control of various HSCs functions. However, miRNA-mediated epigenetic regulations in EMT during liver fibrosis are seldom studied. In this study, Salvianolic acid B (Sal B) suppressed the activation of HSCs in CCl4-treated mice and mouse primary HSCs, leading to inhibition of cell proliferation, type I collagen and alpha-smooth muscle actin. We demonstrated that the antifibrotic effects caused by Sal B were, at least in part, via inhibition of EMT and the Hh pathway. In particular, up-regulation of PTCH1 was associated with decreased DNA methylation level after Sal B treatment. Accordingly, DNA methyltransferase 1 (DNMT1) was attenuated by Sal B in vivo and in vitro. The knockdown of DNMT1 in Sal B-treated HSCs enhanced PTCH1 expression and its demethylation level. Interestingly, increased miR-152 in Sal B-treated cells was responsible for the hypomethylation of PTCH1 by Sal B. As confirmed by the luciferase activity assay, DNMT1 was a direct target of miR-152. Further studies showed that the miR-152 inhibitor reversed Sal B-mediated PTCH1 up-regulation and DNMT1 down-regulation. Collectively, miR-152 induced by Sal B, contributed to DNMT1 down-regulation and epigenetically regulated PTCH1, resulting in the inhibition of EMT in liver fibrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call