Abstract

Ethnopharmacological relevanceActivation of autophagy has been implicated in cerebral ischiemia/reperfusion (I/R) injury. Salvianolate lyophilized injection (SLI) has been widely used in the clinical treatment of cerebrovascular disease in China. Whether SLI has any influence on the activation of autophagy in cerebral I/R injury remains elusive. Aim of the studyThe aim of this study were to assess whether SLI attenuates I/R-induced brain injury and evaluate its associated mechanisms. Materials and methodsFocal cerebral ischaemia was induced by middle cerebral artery occlusion (MCAO). SLI (21 mg/kg) was injected intravenously at the beginning of the reperfusion period and 24 and 48 h after ischaemia. The effects of SLI on brain injury were detected according to infarct volume, neurological score, brain oedema, and HE and TUNEL staining at 72 h post-MCAO. Western blotting was used to detect alterations in the autophagy-relevant proteins LC3, Beclin-1, mTOR, p62, Lamp-1, and CTSD in the ipsilateral cortex at 24 or 72 h post-MCAO. ResultsWe first demonstrated that SLI significantly alleviated the infarct volume, neurological deficits, and brain oedema, and reduced the number of TUNEL-positive cells in rats with cerebral I/R injury. Next, we found that SLI has a bidirectional regulatory effect on autophagy: early-stage (24 h) cerebral ischaemia promotes the activation of autophagy and developmental-stage (72 h) cerebral ischaemia has an inhibitory effect. SLI enhanced I/R-induced autophagy as evidenced by the increased expression level of the autophagy marker protein LC3Ⅱ, as well as the decreased expression of mTOR and the autophagy substrate protein p62, but there was no change in lysosomal activity at 24 h after I/R-induced injury. Moreover, SLI also inhibited excessive activation of autophagy at 72 h after I/R-induced injury, which manifested as downregulating LC3Ⅱ expression, upregulating mTOR and p62 expression, and inhibiting lysosomal activity. ConclusionSLI has a protective effect on cerebral ischaemia/reperfusion injury, which may be mediated by the autophagy-lysosome pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.