Abstract
BackgroundDiabetic retinopathy (DR) is characterized by retinal vascular endothelial cell death and vascular inflammation, which are microvascular complications of diabetes mellitus (DM). Salusin-β, a newly identified peptide, is closely associated with hypertension, atherosclerosis and diabetic cardiomyopathy. However, the exact role of salusin-β in high glucose (HG)-induced retinal capillary endothelial cell (REC) inflammation and apoptosis remains unclear.Patients and MethodsA total of 60 patients with type 2 diabetes and 20 healthy controls were included in this study. Based on fundus fluorescein angiography findings, the diabetic patients were divided into three subgroups: diabetes without retinopathy (DWR), non-proliferative DR (NPDR) and proliferative DR (PDR). Serum salusin-β levels were measured by enzyme-linked immunosorbent assay. Human RECs (HRECs) were cultured in normal glucose (NG) and HG medium with or without salusin-β. Salusin-β expression was analysed by Western blotting and immunofluorescence staining. Expression of the pro-inflammatory cytokines MCP-1, IL-1β, TNF-α, and VCAM-1 was analysed by Western blotting. Reactive oxygen species (ROS) production was measured with 2′,7′-dichlorofluorescein diacetate (DCFH-DA). Cell apoptosis rates were determined by flow cytometry. The levels of p38, JNK, p-p38, and p-JNK and the apoptosis-related proteins cleaved caspase-3, Bax, and cl2 were analysed by Western blotting.ResultsSerum salusin-β levels were higher in diabetic patients than in healthy controls (p = 0.0027), especially in patients with NPDR and PDR (both p<0.01). HG upregulated salusin-β expression in HRECs in a time-dependent manner. Salusin-β exacerbated inflammation and apoptosis, upregulated intracellular ROS production in HG-induced HRECs, and activated ROS-dependent JNK and p38 MAPK signalling, while knockdown of salusin-β suppressed these effects.ConclusionOur findings indicate that salusin-β can promote inflammation and apoptosis via ROS-dependent JNK and p38 MAPK signalling in HG-induced HRECs and could be a therapeutic target for DR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.