Abstract

Ufmylation was proved to play a crucial role in hematopoietic stem cell (HSC) survival and erythroid differentiation, ufmylation deficiency induces acute anemia and lethality of embryos and adults in mouse models. To screen some compounds to rescue phenotypes induced by gene deletion, in this study, we used DDRGK1F/F ; CreERT2 conditional knockout mice, DDRGK1F/F ; CreERT2 bone marrow (BM) and fetal liver cells (FL), Uba5, and DDRGK1 knockdown human CD34 cell in vivo and in vitro, we found salubrinal, a novel inhibitor of eIF-2α dephosphorylation, promoted erythropoiesis at early stage, and partly rescued the acute anemia induce by DDRGK1 deficiency through upregulation of ufmylation and erythroid transcription factors. In phenylhydrazine (PHZ)-induced hemolytic anemia mice, interestingly, salubrinal could significantly improve hemocrit and red blood cell (RBC) indices of the mice treated with PHZ via upregulation of ufmylation. Its novel function was verified to attenuate unfolded protein response (UPR) and cell death programs, and to keep endoplasmic reticulum (ER) homeostasis in HSCs. Taken together results, it suggested that salubrinal may be a promising antianemic agent targeted by ufmylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.