Abstract

Sea level rise (SLR) promotes saltwater intrusion (SWI) into coastal soils globally at an increasing rate, impacting phosphorus (P) dynamics and adjacent water quality. However, how SWI influences P molecular speciation and availability in coastal soils remains poorly understood. By using a space-for-time substitution strategy, we evaluated the SWI impacts on P transformation along a SWI gradient at the Rehoboth Inland Bay, which consists of five sampling locations along a transect representing different SWI degrees. Soils were analyzed at the macro- and micro-scale using X-ray absorption near edge spectroscopy (XANES) and the modified Hedley fractionation. With increasing distance from the Bay, soil salinity (29.3–0.07 mmhos cm−1), the proportion of Fe3+ to total Fe, and P concentrations decreased. The fractionation showed that recalcitrant P was dominant (86.9–89.5% of total P). With increasing SWI, labile P increased gradually, reached a plateau, and then decreased sharply. Bulk XANES spectroscopy showed that soil P was likely dominated by iron and aluminum-associated P (Fe/Al-P), regardless of the SWI degree. Hence, with increasing SWI, P increasingly accumulated in a recalcitrant pool, mainly as Fe/Al-P. μ-XANES spectroscopy revealed that calcium-associated P (Ca-P) existed in P-rich spots of the greatest SWI soil while Al-P occurred in P-rich spots of the low SWI soil, consistent with the greater HCl-P (presumably Ca-P) in the former soil. Overall, results demonstrate that SWI impacts P availability and environmental risk in coastal soils depending on the degree of SWI. These findings have important implications for understanding soil P cycling and availability in SLR-impacted coastal areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.