Abstract

Environmentally sensitive areas along coastlines may be adversely affected by saltwater intrusion (SI), a condition which can be worsened by extensive groundwater extraction. Given the uncertainty of problem parameters, the risk of contamination of the vegetation capture zone needs to be cast in a probabilistic framework. In order to exemplify real situations existing along the Adriatic coast of Emilia-Romagna, a case study involving a pinewood strip and a well field drawing freshwater from an unconfined coastal aquifer was examined. On the basis of a widely adopted sharp interface formulation, key hydrogeological problem parameters were modeled as random variables, and a global sensitivity analysis was carried out to determine their influence on the position of the interface. This analysis utilized an efficient model reduction technique based on Polynomial Chaos Expansion. The risk that saltwater intrusion affects coastal vegetation was then evaluated via a two-step procedure by computing the probability that (i) the leading edge of the saltwater wedge reaches the sensitive area in the horizontal plane, and (ii) the freshwater/saltwater interface reaches the capture zone. The influence of the design parameters of the well field on the overall probability of contamination was investigated, revealing the primary role of the pumping discharge in the examined configuration.

Highlights

  • Contamination of freshwater bodies caused by saltwater intrusion (SI) is a global issue, affecting water quality, vegetation, and soil conditions along coastal lines

  • The maximum intrusion extent was equal to 303.6 m for the selected case study; this value is consistent with those typically observed for the area of Ravenna, and with results reported in numerical studies of the effects of subsidence on SI [35]

  • This study presents a computationally efficient technique to evaluate risk to ecosystems along coastal regions that are impacted by saltwater intrusion processes

Read more

Summary

Introduction

Contamination of freshwater bodies caused by saltwater intrusion (SI) is a global issue, affecting water quality, vegetation, and soil conditions along coastal lines. Deterioration of this freshwater resource threatens the sustainability of the water supply of coastal communities and their economic development [1,2]. Freshwater stored in coastal aquifers is vulnerable to degradation due to (i) its close proximity to seawater, and (ii) the significant water demand associated with coastal areas whereby groundwater is often the main source of drinking water [3]. Costly technological solutions, such as desalination, barriers or injection wells have been implemented to deal with the reduction in freshwater availability [6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call