Abstract

The paucity of multi-component compounds containing the non-steroidal anti-inflammatory drug (NSAID) S-(+)-ibuprofen (S-IBU) in combination with other drugs prompted the present study, which describes 1:1 salts of this active pharmaceutical ingredient (API) with the two most widely used antifibrinolytic APIs, namely 6-aminohexanoic acid (aminocaproic acid, ACA) and tranexamic acid (TXA), which are zwitterions in the solid state. Since NSAIDs are known to cause adverse side effects such as gastrointestinal ulceration, the presence of ACA and TXA in the salts with S-(+)-ibuprofen might counter these effects via their ability to prevent excessive bleeding. The salts were prepared by both the liquid-assisted grinding method and co-precipitation and were characterized by X-ray powder diffraction and single-crystal X-ray diffraction, thermal analysis, Fourier transform infrared spectroscopy, and solubility measurements. The X-ray analyses revealed a high degree of isostructurality, both at the level of their respective asymmetric units and in their extended crystal structures, with charge-assisted hydrogen bonds of the type N-H+⋅⋅⋅O− and O-H+⋅⋅⋅O− featuring prominently. The thermal analysis indicated that both salts had significantly higher thermal stability than S-(+)-ibuprofen. Solubility measurements in a simulated biological medium showed insignificant changes in the solubility of S-(+)-ibuprofen when tested in the form of the salts (S-IBU)−(ACA)+ and (S-IBU)−(TXA)+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call