Abstract

A new designer drug, a dissociative anesthetic, and a putative N-methyl-D-aspartate receptor antagonist, methoxetamine (MXE) noted by the EU Early Warning System has been already identified as a cause of several fatalities worldwide. The primary objective of this work was to develop a suitable sample preparation method allowing for isolation of MXE and its main metabolites in high yields from rat brain, liver, and lungs. For the purpose of the project, MXE and five metabolites were synthesized in-house, specifically O-desmethyl-normethoxetamine, O-desmethylmethoxetamine, dihydro-O-desmethylmethoxetamine, normethoxetamine, and dihydromethoxetamine. A sample preparation procedure consisted in the homogenization of the tissue applying salting-out-assisted liquid-liquid extraction (SALLE). A subsequent liquid chromatography-mass spectrometry (LC-MS) analysis was based on reversed-phased chromatography hyphenated with a triple quad MS system in a positive electrospray mode. Multiple reaction monitoring (MRM) was used for qualification and quantification of the analytes. The quantification was based on the application of an isotopically labeled internal standard, normethoxetamine-d3. The matrix-matched calibrations were prepared for each type of matrix with regression coefficients 0.9943-1.0000. The calibration curves were linear in the concentration range of 2.5-250 ng g(-1). Limits of quantification (LOQs) were estimated as 2.5 and 5 ng g(-1), respectively. Recovery (80-117%) and matrix effect (94-110%) at 100 ng g(-1) and intra- and inter-day accuracy and precision at low (2.5 ng g(-1)), middle (25 ng g(-1)), and upper (250 ng g(-1)) concentration levels for all the analytes in all three types of tissues were also determined. The developed analytical method was applied to a set of real samples gathered in toxicological trials on rats and MXE, and its metabolites were determined successfully.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.