Abstract

Halide salts facilitate the oxidative addition of organic halides to Pd(0). This phenomenon originates from a combination of anionic, cationic, and Pd-Pd cooperative effects. Exhaustive computational exploration at the density functional theory level of the complexes obtained from [Pd0(PPh3)2] and a salt (NMe4Cl or LiCl) showed that chlorides promote phosphine release, leading to a mixture of mononuclear and dinuclear Pd(0) complexes. Anionic Pd(0) dinuclear complexes exhibit a cooperativity between Pd(0) centers, which favors the oxidative addition of iodobenzene. The higher activity of Pd(0) dimers toward oxidative addition rationalizes the previously reported kinetic laws. In the presence of Li+, the oxidative addition to mononuclear [Pd0L(Li2Cl2)] is estimated barrierless. LiCl coordination polarizes Pd(0), enlarging both the electrophilicity and the nucleophilicity of the complex, which promotes both coordination of the substrate and the subsequent insertion into the C-I bond. These conclusions are paving the way to the rational use of the salt effects in catalysis for the activation of more challenging bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call