Abstract

Referee: Dr. Lin Wu, Department of Environmental Horticulture, University of California, Davis, Davis, CA 95616Cotton is a dual-purpose crop, widely used for fiber and oil purposes throughout the world. It is placed in the moderately salt-tolerant group of plant species with a salinity threshold level 7.7 dS m−1, its growth and seed yield being severely reduced at high salinity levels and different salts affect the cotton growth to a variable extent. However, inter- and intraspecific variation for cotton salt tolerance in cotton is considerable and thus can be exploited through specific selection and breeding for enhancing salt tolerance of the crop. There are contrasting reports regarding the crop response to salinity at different plant growth stages, but in most of them it is evident that the crop maintains its degree of salt tolerance consistently throughout its entire developmental phases. In the latter case an effective selection for salt tolerance is possible to be made at any growth stage of the crop. The pattern of uptake and accumulation of toxic ions (Na+ and/or Cl−) in tissues of plants subjected to saline conditions appears to be due mostly to the mechanism of partial ion exclusion (exclusion of Na+ and/or Cl−) in cotton. Maintenance of high tissue K/Na and Ca/Na ratios is suggested to be an important selection criterion for salt tolerance in cotton. While judging the appropriate mechanism of ion transport across the membranes in view of existing literature, it was evident that the PM-ATPase responds to increasing supply of Na+ in the growth medium, but the activity of the transport proteins on the plasma membrane alone were insufficient to regulate intracellular Na+ levels. Vacuolar-ATPase is also not responsive to increased external Na+. The inability of V-ATPase to respond to Na+ gave indication of the lack of effective driving force for compartmentalization of Na+ in cotton. However, in view of some latest studies concenrning the role of some antioxidants in salt tolerance of cotton it was suggested that high levels of antioxidants and an active ascorbate-glutathione cycle are associated with salt tolerance in cotton. Genetic studies with cotton in relation to salinity tolerance exhibited that most of growth, yield, and fiber characteristics are genetically based and most being QTL controlled and variable. The high additive component of variation can be exploited for breeding to produce further improvement in the salt tolerance of cotton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call