Abstract

Conjugated polymers have a broad application foreground in the field of photocatalytic organic synthesis to produce value-added chemicals due to their functional diversity, broad light responsive ability, high thermal and chemical stability, and tunable band structure. Herein, using mixed chloride salts (i.e., NaCl/LiCl) as building template, a series of porous conjugated polymers constructed by melamine and terephthalaldehyde monomers were obtained through a Schiff-base reaction in the absence of any external solvent. Melamine-terephthalaldehyde polymer (i.e., PMTPA-x, x represents the mass ratio of salt-mixture to mixed precursors of PMTPA) materials displayed porous morphologies and possessed different energy band structures via regulating the mass ratio of mixed-salt to monomers. Specifically, PMTPA-20 has a larger specific surface area and more suitable redox potential towards the photocatalytic oxidative coupling of amines to imines. Under visible light, with molecular oxygen as oxidant, PMTPA-20 achieves 97% conversion of benzylamine in 8 h which is 3.9 times higher than that of pristine PMTPA (25% conversion in 8 h). In addition, PMTPA-20 catalyst has good structure stability and reusability performance for photocatalytic reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.