Abstract

Salt stress is one of the most common stresses in agricultural regions worldwide. In particular, sugarcane is affected by salt stress conditions, and no sugarcane cultivar presently show high productivity accompanied by a tolerance to salt stress. Proteomic analysis allows elucidation of the important pathways involved in responses to various abiotic stresses at the biochemical and molecular levels. Thus, this study aimed to analyse the proteomic effects of salt stress in micropropagated shoots of two sugarcane cultivars (CB38-22 and RB855536) using a label-free proteomic approach. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD006075. The RB855536 cultivar is more tolerant to salt stress than CB38-22. A quantitative label-free shotgun proteomic analysis identified 1172 non-redundant proteins, and 1160 of these were observed in both cultivars in the presence or absence of NaCl. Compared with CB38-22, the RB855536 cultivar showed a greater abundance of proteins involved in non-enzymatic antioxidant mechanisms, ion transport, and photosynthesis. Some proteins, such as calcium-dependent protein kinase, photosystem I, phospholipase D, and glyceraldehyde-3-phosphate dehydrogenase, were more abundant in the RB855536 cultivar under salt stress. Our results provide new insights into the response of sugarcane to salt stress, and the changes in the abundance of these proteins might be important for the acquisition of ionic and osmotic homeostasis during exposure to salt stress.

Highlights

  • Sugarcane (Saccharum spp.) is an important crop in several countries and Brazil is the largest producer of sugarcane in the world [1]

  • CB38-22 presented a greater reduction in its aerial growth, indicating that this cultivar is more affected by salt stress (Fig 1)

  • The response of each cultivar to exposure to 180 mM NaCl showed differences in the dry matter parameter: the RB855536 cultivar did not change in comparison to its control, and the CB38-22 cultivar showed a reduction of 29%, confirming its greater sensitivity to salt stress

Read more

Summary

Introduction

Sugarcane (Saccharum spp.) is an important crop in several countries and Brazil is the largest producer of sugarcane in the world [1]. The expansion of sugarcane cultivation is economically. Were provided by the Coordination for the Improvement of Higher Education Personnel (CAPES) to LZP, RSR, and AHS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call