Abstract

Proline (Pro) is one of the most accumulated osmolytes in salinity and water deficit conditions in plants. In the present study, we measured the Pro content, the activity and the expression level of delta 1-pyrroline-5-carboxylate synthetase (P5CS: γ-glutamyl kinase, EC 2.7.2.11 and glutamate-5-semialdehyde dehydrogenase, EC 1.2.1.41), a key regulatory enzyme involved in the biosynthesis of Pro, in cactus pear ( Opuntia streptacantha) subjected to 6, 9 and 11 days of salt stress. Treatment with NaCl of O. streptacantha young plants resulted in a decrease in the cladode thickness and root length, and in a significant and gradual accumulation of Pro in young cladodes, in a time- and concentration-dependent manner. P5CS activity, studied as γ-glutamyl kinase, was reduced at all times as a consequence of salt treatment, except at the sixth day at 75 and 150 mM of NaCl, where a slight increase was observed. We isolated an open reading frame (ORF) fragment of p5cs gene. The deduced amino acid sequence of the P5CS protein exhibited 90.4% of identity with the P5CS protein from Mesembryanthemum crystallinum. RT-PCR analysis revealed that the Osp5cs gene of O. streptacantha was induced by salt stress at 9 and 11 days of treatment. Furthermore, ABA-induced Osp5cs gene expression was observed in cladodes of cactus pear young plants. We observed an evident correlation between the transcript up-regulation and the Pro accumulation under salt stress; however, these results do not parallel with the changes in P5CS enzymatic activity. This Pro accumulation might function as an osmolyte for the intracellular osmotic adjustment and might be playing a critical role in protecting photosynthetic activity in O. streptacantha plants under salt stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.