Abstract

Osmotic stress elicits hypertonic NaCl secretion and promotes structural and biochemical differentiation in avian salt glands. In addition to cholinergic control, Cl- secretion is stimulated by vasoactive intestinal peptide (VIP), suggesting that the cystic fibrosis transmembrane conductance regulator (CFTR) may be present and that its expression may be regulated by chronic salt stress. Anion efflux, assayed by 6-methoxy-N-(3-sulfopropyl)quinolinium fluorescence changes in single cells, was stimulated by VIP or 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate. Immunoblots with a COOH-terminal peptide antibody to human CFTR revealed approximately 170- and approximately 180-kDa bands in lysates from control and salt-stressed glands, respectively. Both variants reduced to approximately 140 kDa after N-glycanase digestion and gave identical tryptic phosphopeptide maps after immunoprecipitation and phosphorylation by protein kinase A. CFTR was localized to apical membranes by immunofluorescence and, additionally, to subapical vesicles by immunoelectron microscopy. Salt stress induced an approximately twofold increase in CFTR abundance/cell protein (approximately 5-fold/cell) and intensified apical membrane immunofluorescence. For comparison, Na+ pump expression increased approximately fourfold per cell protein with little change in actin. Thus differentiation induced by salt stress is accompanied by alteration in CFTR abundance and glycosylation. Upregulation of CFTR likely contributes to increased efficiency of Cl- secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.