Abstract

Our previous study has suggested that Listeria monocytogenes produces extracellular membrane vesicles (MVs) and its general stress transcription factor sigma B (σB) affects the production of MVs under energy stress. The objective of this study was to evaluate the production of MVs and perform global protein profiling for MVs with or without salt stress to understand the function of MVs in the pathogenesis of L. monocytogenes. When cells of L. monocytogenes were grown under 0.5 M salt stress, protein concentrations of MVs derived from wild-type strain and its isogenic ΔsigB mutant were approximately doubled compared to those of MVs derived from cells without salt stress. Proteomic analyses showed that the number of MV proteins expressed in wild-type strain was similar to that in ΔsigB mutant under salt stress. However, global protein expression profiles were dramatically changed under salt stress compared to those without salt stress. Fifteen σB dependent proteins were expressed in MVs of wild-type strain under salt stress, including osmolyte transporter OpuCABCD. In addition, MVs produced by salt stressed wild-type and ΔsigB mutant inhibited biofilm formation abilities of both strains. Taken together, our results suggest that salt stress can promote the production of MVs involved in carnitine transporter proteins, with σB playing a pivotal role in biological event.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.