Abstract

The basolateral chloride channel ClC-Kb facilitates Cl reabsorption in the distal nephron of the human kidney. Functional mutations in CLCNKB are associated with Bartter's syndrome type 3, a hereditary salt-losing nephropathy. To address the function of ClC-K2 invivo, we generated ClC-K2-deficient mice. ClC-K2-deficient mice were generated using TALEN technology. ClC-K2-deficient mice were viable and born in a Mendelian ratio. ClC-K2-/- mice showed no gross anatomical abnormalities, but they were growth retarded. The 24-h urine volume was increased in ClC-K2-/- mice (4.4±0.6 compared with 0.9±0.2mL per 24h in wild-type littermates; P=0.001). Accordingly, ambient urine osmolarity was markedly reduced (590±39 vs. 2216±132mosmolL-1 in wild types; P<0.0001). During water restriction (24h), urinary osmolarity increased to 1633±153 and 3769±129mosmolL-1 in ClC-K2-/- and wild-type mice (n=12; P<0.0001), accompanied by a loss of body weight of 12±0.4 and 8±0.2% respectively (P<0.0001). ClC-K2-/- mice showed an increased renal sodium excretion and compromised salt conservation during a salt-restricted diet. The salt-losing phenotype of ClC-K2-/- mice was associated with a reduced plasma volume, hypotension, a slightly reduced glomerular filtration rate, an increased renal prostaglandin E2 generation and a massively stimulated renin-angiotensin system. Clckb-/- mice showed a reduced sensitivity to furosemide and were completely resistant to thiazides. Loss of ClC-K2 compromises TAL function and abolishes salt reabsorption in the distal convoluted tubule. Our data suggest that ClC-K2 is crucial for renal salt reabsorption and concentrating ability. ClC-K2-deficient mice in most aspects mimic patients with Bartter's syndrome type 3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.