Abstract

Although emulsion gels show significant potential as fat substitutes, they are vulnerable to degreasing, delamination, and other undesirable processes during freezing, storage, and thawing, leading to commercial value loss in terms of juiciness, flavor, and texture. This study investigated the gel strength and freeze-thaw stability of soybean protein isolate (SPI)/curdlan (CL) composite emulsion gels after adding sodium chloride (NaCl). Analysis revealed that adding low salt ion concentrations promoted the hardness and water-holding capacity (WHC) of fat substitutes, while high levels displayed an inhibitory effect. With 40 mM NaCl as the optimum concentration, the hardness increased from 259.33 g (0 mM) to 418.67 g, the WHC increased from 90.59 % to 93.18 %, exhibiting good freeze-thaw stability. Confocal laser scanning microscopy (CLSM) and particle size distribution were used to examine the impact of salt ion concentrations on protein particle aggregation and the damaging effect of freezing and thawing on the proteoglycan complex network structure. Fourier-transform infrared spectroscopy (FTIR) and protein solubility evaluation indicated that the composite gel network structure consisted of covalent contacts between the proteoglycan molecules and hydrogen bonds, playing a predominant role in non-covalent interaction. This study showed that the salt ion concentration in the emulsion gel affected its molecular interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call