Abstract
Salts modulate the behavior of intrinsically disordered proteins (IDPs) and influence the formation of membraneless organelles through liquid-liquid phase separation (LLPS). In low ionic strength solutions, IDP conformations are perturbed by the screening of electrostatic interactions, independent of the salt identity. In this regime, insight into the IDP behavior can be obtained using the theory for salt-induced transitions in charged polymers. However, salt-specific interactions with the charged and uncharged residues, known as the Hofmeister effect, influence IDP behavior in high ionic strength solutions. There is a lack of reliable theoretical models in high salt concentration regimes to predict the salt effect on IDPs. We propose a simulation methodology using a coarse-grained IDP model and experimentally measured water to salt solution transfer free energies of various chemical groups that allowed us to study the salt-specific transitions induced in the IDPs conformational ensemble. We probed the effect of three different monovalent salts on five IDPs belonging to various polymer classes based on charged residue content. We demonstrate that all of the IDPs of different polymer classes behave as self-avoiding walks (SAWs) at physiological salt concentration. In high salt concentrations, the transitions observed in the IDP conformational ensembles are dependent on the salt used and the IDP sequence and composition. Changing the anion with the cation fixed can result in the IDP transition from a SAW-like behavior to a collapsed globule. An important implication of these results is that a suitable salt can be identified to induce condensation of an IDP through LLPS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.