Abstract

A theoretical model of polyelectrolyte gels is presented to study continuous and discontinuous volume phase transitions induced by changing salt concentration in the external solution. Phase diagrams are constructed in terms of the polymer–solvent interaction parameters, external salt concentration, and concentration of fixed charges. Comparisons with previous experiments for an ionized acrylamide gel in mixed water–acetone solvents are made with good quantitative agreement for a monovalent salt (NaCl) but fair qualitative agreement for a divalent salt (MgCl2), using a simple set of parameters for both cases. The effective polymer–solvent interactions vary with the volume fraction of acetone in the mixed solvent, leading to either continuous or discontinuous volume transitions. The presence of divalent ions (Mg2+) in addition to monovalent ions in the external solution reduces the critical salt concentration for the discontinuous transition by several orders of magnitude. Moreover, a secondary continuous transition is predicted between two highly swollen states for the case of a divalent salt. The present model may be further extended to study volume phase transitions of polyelectrolyte gels in response to other stimuli such as temperature, pH and electrical field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call