Abstract

Self-assemly of block copolymers (BCPs) and phenolic resin (PR) is an important method to prepare ordered mesoporous polymers (OMPs) and carbon materials (OMCs). In the process, phase separation of the BCP–PR composite is a critical step which is, however, time-consuming in aqueous solution. Here we report, for the first time, a new salt-induced phase separation strategy to achieve this goal. Triblock copolymer F127 and phenol-formaldehyde resin (PF) are used as the template and precursor, respectively, and sodium chloride (NaCl) is applied to induce the coagulation and phase separation of the F127–PF composite which is transformed to be OMC at high temperature. It is found that the maintenance of the ordered mesostructure is highly dependent on the pH of the F127–PF solution under NaCl interference. A hypothetical mechanism is proposed to explain the role of pH in the formation of ordered mesostructure when salt is introduced into the self-assembly system. The effects of pH, salt concentration, and varie...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call