Abstract
Salt effects on the aggregation behavior of tripolar zwitterionic surfactants in aqueous solutions have been investigated using surface tension, dynamic light scattering (DLS), freeze-fracture transmission electron microscopy (FF-TEM), and 1H NMR. The tripolar zwitterionic surfactants with different inter-charge spacers are [C14H29(CH3)2N+CsN+(CH3)2CH2CH2CH2SO3 −]Br− (C14CsTri, Cs = –(CH2)2–, –(CH2)6–, –(CH2)10–, and p-xylyl). It is found that the critical micelle concentration (CMC) values of the corresponding traditional zwitterionic surfactant C14H29(CH3)2N+CH2CH2CH2SO3 − (TPS) are almost constant with the increase of the NaBr concentration. However, the CMC values of C14CsTri decrease sharply at a lower NaBr concentration and then level off at a higher NaBr concentration. Moreover, the decreasing extents of the CMC values for C14C2Tri, C14C6Tri, and C14CpxTri are very close, but more significant than that for C14C10Tri, suggesting that the self-assembly ability of the tripolar zwitterionic surfactants with a longer inter-charge spacer is less sensitive to NaBr. The DLS and FF-TEM results reveal that C14C2Tri, C14C6Tri, and C14CpxTri form micelles without NaBr and that the size slightly increases with the increase of NaBr concentration, whereas micelles and vesicles coexist for C14C10Tri and TPS without NaBr and then transfer to micelles upon the addition of NaBr. The salt-induced morphological transition for C14C10Tri is further studied using 1H NMR. The addition of NaBr reduces both the electrostatic repulsion between the same charged ammoniums and the electrostatic attraction between the oppositely charged ammonium and sulfonate. Thus, the longer inter-charge spacer of C14C10Tri tends to be more bended and the sulfonate group becomes available to contact the ammonium, which promotes micellization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.