Abstract

In secondary ion mass spectrometry, the molecular environment from which a sample is analyzed can influence ion formation, affecting the resulting data. With the recent surge in studies involving examination of biological specimens, a better understanding of constituents commonly found in biological matrixes is necessary. In this article we discuss results from an investigation directed at understanding the role of salts doped as alkali chlorides in a model biological environment, arginine. The data show that addition of salt to the model system causes ion suppression of all the major mass spectral peaks attributed to arginine, with KCl having the largest suppression effect. Potential causes for the suppression effects are briefly discussed in relation to collected data. These theories include sample degradation, formation of salt adduct peaks, and anion neutralization. Investigation of the arginine salt data in comparison with data collected from pure salt systems indicates that suppression of the positive secondary ions is likely caused by a neutralization process involving the salt counteranion, chloride. To address the suppression issue, various procedures were performed on the arginine films such as sample washing with a cleaning solution (ammonium formate, ethanol, water) and analysis of films in a frozen-hydrated state. We present data from the analysis of the frozen-hydrated samples that shows both an ion yield enhancement and a significant amelioration of the salt suppression effects when compared to the samples run under standard conditions, demonstrating that it is a helpful approach to dealing with salt suppression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.