Abstract

The effect of salinity on biological nitrogen and denitrifying phosphorus removal was investigated in a Modified University of Cape Town (MUCT) system. Removal rates of COD, NH4+-N, NO3−-N, NO2−-N, phosphorus and the sludge characteristics at salt concentrations (0.0, 3.2, 6.4, 11.2 and 16.0 g L−1) were analyzed. With the salt concentration increasing, all the COD, NH4+-N, TN and TP removal rates exhibited a trend of decline, and exhibited an initial reduction and subsequent increase at every stage of salt concentration. NH4+-N, TN and TP removal rates were 92.7%, 51.5% and 67.2% in 16 g L−1 salt concentration, respectively. And they were outperformed the literature reported and acceptable in practical applications. When the salinity of wastewater changed from 0.0 to 16.0 g L−1, the biomass yield coefficients increased from 0.0794 to 0.126 g VSS/g COD. Increased salinity had a detrimental effect on phosphorus-accumulating organisms (PAOs) and denitrifying PAOs (DPAOs) (especially DPAOs). Therefore, phosphorus removal gradually depended on PAO. The simultaneous nitrification and denitrification (SND) rate and nitrogen removal rate (including nitrification rate, denitrification rate, and total nitrogen removal rate) gradually decreased with the increased salinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.