Abstract

Extensive dissolution of evaporites has occurred in the Williston Basin, Canada, but it is unclear what effect this has had on bulk permeability. The bulk of this dissolution has occurred from the Prairie Evaporite Formation, which is predominantly halite and potash. However, minor evaporite beds and porosity infilling have also been removed from the overlying Dawson Bay and Souris River formations, which are predominantly carbonates. This study examines whether permeability values in the Dawson Bay and Souris River formations have been affected by dissolution, by analyzing 142 drillstem tests from those formations. For both the Dawson Bay and Souris River formations, the highest permeabilities were found in areas where halite dissolution had occurred. However, the mean permeabilities were not statistically different in areas of halite dissolution compared to those containing connate water. Subsequent precipitation of anhydrite is known to have clogged pore spaces and fractures in some instances. Geochemical relationships found here support this idea but there is no statistically significant relationship between anhydrite saturation and permeability. Geomechanical effects, notably closure of fractures due to collapse, could be a mitigating factor. The results indicate that coupling dissolution and precipitation to changes in permeability in regional flow models remains a significant challenge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.