Abstract
This study examines response of Anabaena sp. PCC 7120 to salt and UV-B stress by combining physiological, biochemical, proteomics and bioinformatics approaches. Sixty five significantly altered protein spots corresponding to 51 protein genes identified using MALDI-TOF MS/MS were divided into nine functional categories. Based on relative abundance, these proteins were grouped into four major sets. Of these, 27 and 5 proteins were up- and downregulated, respectively, both under salt and UV-B while 8 and 11 proteins showed accumulation in salt and UV-B applied singly. Some responses common to salt and UV-B included (i) enhanced expression of FeSOD, alr3090 and accumulation of MDA indicating oxidative stress, (ii) accumulation of PDH, G6P isomerase, FBPaldolase, TK, GAPDH and PGK suggesting enhanced glycolysis, (iii) upregulation of 6-PGD, 6PGL and NADPH levels signifying operation of pentose phosphate pathway, (iv) upregulation of Dps, NDK and alr3199 indicating DNA damage, and (v) accumulation of proteins of ribosome assembly, transcriptional and translational processing. In contrast, enhanced expression of RUBISCO, increased glycolate oxidase activity and ammonium content under salt signify the difference. Salt was found to be more damaging than UV-B probably due to a cumulative effect of ionic, osmotic and oxidative damage. A group of proteins having common expression represent decreased toxicity of salt and UV-B when applied in combination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.