Abstract

Heat and salt induced aggregation of three well-defined double hydrophilic block copolymers (DHBCs) of sodium 2-(acrylamido)-2-methylpropanesulfonate (AMPS) and N-isopropylacrylamide (NIPAM) with constant chain length of the PAMPS block (with number-average degree of polymerization, DP n = 61) and varying chain length of the PNIPAM block with DP n = 11, 23, and 34 synthesized via reversible addition-fragmentation chain transfer (RAFT) controlled radical polymerization was investigated by turbidity, dynamic light scattering (DLS) and 1H NMR measurements. In the presence of salt or with an increase in temperature, the diblock copolymers form micelles with a PNIPAM core and PAMPS corona. The heat and salt induced aggregation in dilute aqueous solutions dependant on the molecular characteristics of the DHBC (DP n of the PNIPAM block) was observed. The DHBC becomes amphiphilic as the PNIPAM block loses hydrophilicity at higher temperature above its lower critical solution temperature (LCST). Furthermore, the presence of salt induces salting out effect of the uncharged PNIPAM block. The diblock copolymer thus forms nanosized aggregates at a high temperature or in the presence of salt. These aggregates may be multiple aggregates due to inter-micellar aggregation of the spherical core-corona micelles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call