Abstract

Green infrastructures within sprawling cities provide essential ecosystem services, increasingly undermined by environmental stress. The main objective in this study was to relate the allocation patterns of NaCl contaminants to injury within foliage of lime trees mechanistically and distinguish between the effects of salt and other environmental stressors. Using field material representative of salt contamination levels in the street greenery of Riga, Latvia, the contribution of salt contaminants to structural and ultrastructural injury was analyzed, combining different microscopy techniques. On severely salt-polluted and dystrophic soils, the foliage of street lime trees showed foliar concentrations of Na/Cl up to 13,600/16,750 mg kg−1 but a still balanced nutrient content. The salt contaminants were allocated to all leaf blade tissues and accumulated in priority within mesophyll vacuoles, changing the vacuolar ionic composition at the expense of especially K and Ca. The size of mesophyll cells and vacuoles was increased as a function of NaCl concentration, suggesting impeded transpiration stream. In parallel, the cytoplasm showed degenerative changes, suggesting indirect stress effects. Hence, the lime trees in Riga showed tolerance to the dystrophic environmental conditions enhanced by salt pollution but their leaf physiology appeared directly impacted by the accumulation of contaminants within foliage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.