Abstract

Spt-Ada-Gcn5 acetyltransferase (SAGA) is a previously described histone acetyltransferase/transcriptional coactivator complex in yeast. At promoters of certain genes (HIS3 and TRP3), SAGA has an inhibitory function involving a nonproductive TATA-binding protein interaction mediated by the Spt3 and Spt8 subunits. Related to this, Spt8-less SAGA is a major form of the complex under activating conditions for these genes. In the present study, we purify this activation-specific complex, called SALSA (SAGA altered, Spt8 absent). Besides lacking Spt8, SALSA contains Spt7 subunit that is truncated. Examining the role of this subunit, we find that C-terminally truncated SPT7 resulted in derepressed HIS3 transcription. Furthermore, when grown in rich media (repressing conditions), wild-type cells yielded predominantly SAGA, but Spt7 C-terminal truncations resulted primarily in a form of complex similar to SALSA. Thus, SALSA-like structure and activating function can be partially recapitulated in yeast by truncating the C terminus of Spt7. Overall, these results lead to a model that for a subset of promoters SAGA is inhibitory through Spt3, Spt8, and an Spt8-interacting subdomain of Spt7, whereas SALSA is a form of complex for positive transcriptional regulation. These data clarify a mechanism by which a transcriptional regulatory complex can switch between positive and negative modulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.