Abstract

This paper proposes an innovative strategy to integrate thermoelectric generator (TEG) and photovoltaic (PV) systems, aiming to enhance energy production efficiency by addressing the significant waste heat generated during traditional PV system operation. Additionally, photovoltaic-thermoelectric generator (PV-TEG) hybrid system encounters the dual challenge of partial shading conditions (PSC) and non-uniform temperature distribution (NTD). Thus, salp swarm optimization (SSA) is introduced to simultaneously tackle the negative impacts of PSC and NTD. In contrast to alternative meta-heuristic algorithms (MhAs) and conventional mathematical approaches, the streamlined and effective optimization mechanism inherent to SSA affords a shorter optimization time, while mitigating the risk of the PV-TEG hybrid system’s optimization outcomes being confined to local maximum power points (LMPP). Furthermore, the optimization performance of SSA for PV-TEG hybrid systems is assessed via four case studies, including start-up test, stepwise variations in solar irradiation at constant temperature, stochastic change in solar irradiation, and field measured data for typical days in Hong Kong, in which simulation results show that SSA evinces unparalleled global exploration and local search capabilities, yielding heightened energy output (up to 43.75%) and effectively suppressing power fluctuations in the PV-TEG hybrid system (as evidenced by ΔVavg and ΔVmax).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.