Abstract

Salp Swarm Algorithm (SSA) is a recent metaheuristic inspired by the swarming behavior of salps in oceans. SSA has demonstrated its efficiency in various applications since its proposal. In this chapter, the algorithm, its operators, and some of the remarkable works that utilized this algorithm are presented. Moreover, the application of SSA in optimizing the Extreme Learning Machine (ELM) is investigated to improve its accuracy and overcome the shortcomings of its conventional training method. For verification, the algorithm is tested on 10 benchmark datasets and compared to two other well-known training methods. Comparison results show that SSA based training methods outperforms other methods in terms of accuracy and is very competitive in terms of prediction stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.