Abstract

8-Formyl-7-hydroxycoumarin (A) and their derived salophen-type organocatalysts L1, L2, and L3 were used for the synthesis of cyclic carbonates from carbon dioxide (CO2) and epoxides under solvent-, halide-, and metal-free conditions. According to previous optimization tests, L1 and L2 had the best catalytic activity presenting 89 and 92% conversion toward the synthesis of 3-chloropropylene carbonate (2c) using 8 bar CO2, 100 °C at 9 h. Therefore, they were used as organocatalysts to complete the catalytic screening with 11 terminal epoxides (1a-k) exhibiting the highest TOF values of 20 and 22 h-1 using 1c and 1b, respectively. Similarly, they were tested with an internal epoxide, such as cyclohexene oxide (1l) exhibiting 72% conversion, becoming the first salophen organocatalyst to obtain cis-cyclohexane carbonate (2l) in the absence of a cocatalyst. In addition, a reaction mechanism was proposed for the formation of cyclic carbonates based on experimental data and computational techniques; these contributed in establishing a probable role of CO2 pressure along the catalysis and the hydrogen bonds that favor the stabilization of the different intermediates of the reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call