Abstract

Pathogenic Salmonella strains have a set of virulence factors allowing them to generate systemic infections and damage in a variety of hosts. Among these factors, bacterial proteins secreted by specialized systems are used to penetrate the host's intestinal mucosa, through the invasion and destruction of specialized epithelial M cells in the intestine. On the other hand, numerous studies have demonstrated that humans, as well as experimental animal hosts, respond to Salmonella infection by activating both innate and adaptive immune responses. Here, through live cell imaging of S. Typhimurium infection of zebrafish larvae, we showed that besides the intestinal colonization, a deformed cloacae region and a concomitant accumulation of S. Typhimurium cells was observed upon bacterial infection. The swelling led to a persistent inflammation of infected larvae, although the infection was non-lethal. The invivo inflammation process was confirmed by the co-localization of GFP-tagged S. Typhimurium with mCherry-tagged neutrophils at 72h post exposition. Our live-cell analyses suggest that Salmonella Typhimurium induce cloacitis-like symptoms in zebrafish larvae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.