Abstract

Salmonella enterica serotype Typhimurium (S. Typhimurium) is one of the most frequent causes of food-borne illness in humans and usually associated with acute self-limiting gastroenteritis. However, in immunocompromised patients, the pathogen can disseminate and lead to severe systemic diseases. S. Typhimurium are facultative intracellular bacteria. For uptake and intracellular life, Salmonella translocate numerous effector proteins into host cells using two type-III secretion systems (T3SS), which are encoded within Salmonella pathogenicity islands 1 (SPI-1) and 2 (SPI-2). While SPI-1 effectors mainly promote initial invasion, SPI-2 effectors control intracellular survival and proliferation. Here, we elucidate the mode of action of Salmonella SPI-2 effector SseI, which is involved in control of systemic dissemination of S. Typhimurium. SseI deamidates a specific glutamine residue of heterotrimeric G proteins of the Gαi family, resulting in persistent activation of the G protein. Gi activation inhibits cAMP production and stimulates PI3-kinase γ by Gαi-released Gβγ subunits, resulting in activation of survival pathways by phosphorylation of Akt and mTOR. Moreover, SseI-induced deamidation leads to non-polarized activation of Gαi and, thereby, to loss of directed migration of dendritic cells.

Highlights

  • Crucial virulence factors are encoded on two Salmonella pathogenicity islands Salmonella pathogenicity islands 1 (SPI-1) and SPI-2

  • Salmonella enterica serovars are pathogenic bacteria that cause severe diseases ranging from enteric fever to gastroenteritis and bacteraemia caused by nontyphoidal Salmonella (NTS)

  • Because crystallographic studies suggested that the 37 kDa SseI effector protein exhibits structural similarity with the catalytic domain of the deamidating Pasteurella multocida toxin (PMT) [16], we studied whether SseI possesses deamidase activity

Read more

Summary

Introduction

Salmonella enterica serovars are pathogenic bacteria that cause severe diseases ranging from enteric fever (e.g. by Salmonella Typhi) to gastroenteritis and bacteraemia caused by nontyphoidal Salmonella (NTS). Salmonella Typhimurium, the model organism of NTS infection, has a broad host spectrum and is one of the most frequent causes of food-borne illness in humans and other vertebrates including food-producing animals. S. Typhimurium infection is usually associated with acute self-limiting gastroenteritis in immunocompetent individuals. Typhimurium can disseminate and lead to severe systemic diseases [1,2,3,4]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.