Abstract

Surface-enhanced Raman spectroscopy (SERS) has been used in a variety of biological applications due to its high sensitivity and specificity. Here, we report a SERS-based aptasensor approach for quantitative detection of pathogenic bacteria. A SERS substrate bearing Au@Ag core/shell nanoparticles (NPs) is functionalized with aptamer 1 (apt 1) for the capture of target molecules. X-rhodamine (ROX)-modified aptamer 2 (apt 2) is used as recognition element and Raman reporter. Salmonella typhimurium specifically interacted with the aptamers to form Au@Ag-apt 1-target-apt 2-ROX sandwich-like complexes. As a result, the concentration of S. typhimurium was determined using this developed aptasensor structure, and a calibration curve is obtained in the range of 15 to 1.5×106cfu/mL with a limit of detection of 15cfu/mL. Our method was successfully applied to real food samples, and the results are consistent with the results obtained using plate counting methods. We believe that the developed method shows potential for the rapid and sensitive detection of pathogenic bacteria in food safety assurance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.